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Abstract
In systems without inversion, symmetry spin–orbit interactions couple the
charge–current and spin-polarization degrees of freedom. This review gives
a brief summary of the origins of this coupling and reviews a variety of ways
in which the coupling may be made evident experimentally, with emphasis on
the detection of electric-field driven spin polarization.
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1. Introduction

In systems lacking inversion symmetry, associated with either the crystalline structure or the
physical configuration, the spin degeneracy of Bloch states may be removed by the spin–orbit
interaction. The remaining degeneracy of the two states |k↑〉 and |−k↓〉, required by time-
reversal symmetry in the absence of magnetic fields, implies a connection between wavevector
and spin which leads to surprising correlations of spin polarization and charge current. An
applied electric field induces not only a charge current but also a spin polarization. Conversely
the generation of a non-equilibrium spin polarization typically results simultaneously in a
charge current. The effects discussed in this review are, of course, in addition to the many
important consequences of the spin–orbit splitting of the valence band states of typical
semiconductors at k = 0.

The emerging field of spintronics has focused primarily on issues of spin injection
and detection in semiconductor systems and magnetoresistance and related phenomena in
inhomogeneous metallic systems. In semiconductors with large spin–orbit splittings the
coupling of spin polarization with electric fields or currents offers new opportunities for spin
manipulation in both electronic and optoelectronic devices. With these possibilities in mind,
this review will focus primarily on systems confined to two-dimensions, where the relevant
splittings are much larger than in three-dimensional systems, and to degenerate gases (Fermi
systems) of electrons or holes. Much of the early theoretical work focused more on three
dimensions and classical gases (Boltzmann systems) but most of the basic physics is very
much the same and often simpler for the degenerate two-dimensional electron gas (2DEG).
Our discussion also focuses on behaviour in the absence of applied magnetic fields. With
the application of a magnetic field, there arises a rich spectroscopy of ‘combined resonance’
experiments, reviewed by Rashba [1], in which the spin splittings play a critical role, and there
are many experiments, referenced in table 1, which are influenced by the splitting and can
yield values of the splitting parameter.

We start with a review of the spin–orbit splitting and its implications for the electron
dispersion relations and one-electron eigenstates, first in three dimensions and then, in more
detail, in two-dimensional systems. Critical is the coupling between wavevector and spin
orientation of the eigenstates. In exploring the experimental ramifications of this coupling, we
first look at the spin polarization produced in association with a charge current by application
of an electric field and how that polarization might be detected. It is natural then to consider
the converse problem, the excitation of spin polarization and the detection of the associated
charge currents. Since this second topic was recently reviewed by Ganichev and Prettl [2], we
restrict the discussion here to a brief summary of the essential ideas, a few very recent results,
and mere mention of the number of relevant issues.

2. Band structure with spin–orbit splitting

2.1. Spin–orbit splittings in three dimensions

As suggested already the key to connecting spin accumulation with charge currents is the
correlation, in the electronic eigenstates, of wavevector with spin orientation. Time reversal
symmetry leads to the Kramers theorem requiring that a state of spin-up and wavevector k

must be degenerate with the spin-down state of wavevector −k, E(k↑) = E(−k↓), but in
the absence of inversion symmetry we may expect E(k↑) �= E(−k↑) and E(k↑) �= E(k↓).
As a consequence, non-equilibrium occupation of states of particular spin will be associated
with non-equilibrium occupation of states of related wavevector: there may be an association
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of charge current and spin polarization. We must first explore the energy dispersion relations
for systems exhibiting this lifting of the spin degeneracy. In particular, our interest is in
spin-dependent terms in the energy which are linear or cubic in the wavevector.

Dresselhaus [3] has shown, for the electronic states in the zinc blende structure, the
existence of splittings linear in k for the heavy/light hole band and cubic in k for the conduction
and split-off hole bands. The spin–orbit energies for the conduction band states, for example,
are given by

ESO = ±γ [k2
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corresponding to interaction of the spin with an effective magnetic field
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with β the Bohr magneton, g the g-factor for the Zeeman splitting and γ a measure of the
strength of the spin–orbit splitting. The coordinate axes are the cubic axes of the crystal. The
effective field is perpendicular to the wavevector k and of a magnitude which depends upon the
direction of k. In particular it is zero for k along the (111) and (100) symmetry directions. This
contribution to the spin splitting, either in three dimensions or the contribution derived from
it in two dimensions, is often referred to as the Dresselhaus term. The prediction of this term
was confirmed in bulk GaSb by Seiler et al [4] based on the beating pattern in Shubnikov–de
Haas oscillations, the technique which has become the most common in characterizing the
spin splittings in both three- and two-dimensional systems.

A useful review of bulk spin splittings in cubic III–V compounds is given by Pikus et al
[5], including both theoretical expressions for the splitting constants in terms of material
parameters and experimental values determined from spin relaxation measurements. The
discussion includes the implications of the reduction of the tetrahedral symmetry of the zinc
blende structure by application of a uniaxial stress: in this case spin–orbit terms linear in k
become symmetry allowed for the conduction and split-off valence bands as well as for the
heavy/light hole band [6].

The lower symmetry of the wurzite structure allows spin–orbit splittings of the conduction
band states linear in k as noted by Rashba [7–10] and independently by Casella [11]. These are
in addition to cubic terms similar to those of the zinc blende case, though with appropriately
lowered symmetry. The symmetry-allowed linear splitting is represented as an added term, a
‘Rashba term’, in the Hamiltonian,

HSO = ασ · (k × ẑ), (3)

where σ is the vector of the Pauli spin matrices, ẑ a unit vector in the direction of the threefold
symmetry axis of the crystal and α a parameter describing the strength of the spin–orbit
splitting. Again this term may be interpreted as the interaction of the electron spin with an
effective magnetic field,

HSO = (2α/gβ)(k × ẑ), (4)

which is often referred to as the Rashba field. We will frequently speak of the splitting in terms
of the corresponding frequency ωSO ≡ gβ|HSO|/h̄ = 2α|k|/h̄, the precession rate of the spin
in the spin–orbit field.

2.2. Spin–orbit splittings in two dimensions

Of particular interest in this review are experiments on samples with electrons or holes confined
to two dimensions, the two-dimensional electron gas or 2DEG. We give only a brief introduction
here: a comprehensive review is given by Zawadzki and Pfeffer [12]. Restricting the discussion
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to spin splittings which are linear in k we find two possible symmetries for the spin–orbit term
of the effective Hamiltonian:

HD = α(kxσx − kyσy) (5)

HR = α(kxσy − kyσx ), (6)

where we have assumed a (100) or (111) direction of growth for equation (5). Terms of the
form of equation (5) are conventionally referred to as Dresselhaus or bulk-inversion-asymmetry
(BIA) terms, and of the form equation (6) as Rashba or structure-inversion-asymmetry (SIA)
terms. Both the Dresselhaus term, for (001) or (111) growth directions, and the Rashba term
give energy splittings isotropic in the confining plane.

Terms of the Dresselhaus form typically derive from the k3 spin–orbit term, equation (1), of
the bulk band structure [13–15]. In a quantum well with infinite barrier height the confinement
of the electron wavefunction in the growth direction forces quantization of the corresponding
component of the wavevector. For the case of the lowest subband, normally the only case of
interest, this implies |kgrowth| = π/b where b is the thickness of the well. If this value is used
in the expression equation (1) we obtain an expression for the spin splitting of the 2DEG as a
function of wavevector in the plane of the well. If the growth direction is along the cubic axis
ẑ this gives

E(kx, ky) = ±γ
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In the limit (π/b)2 � (k2
x + k2

y) the corresponding effective field is

HSO = 2γ

gβ

(π
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)2
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The parameter α of equation (5) for the 2DEG is related to the parameter γ for the three-
dimensional systems by α = (2γ /gβ)(π/b)2. In the limit of narrow wells the splitting is
isotropic in the plane of the well, but inclusion of the terms cubic in the in-plane wavevector
gives a more complicated effective field and the splittings become anisotropic [14, 16, 17]. The
anisotropy terms will be important for Fermi wavevectors comparable with the confinement
parameter π/b or, equivalently, for Fermi energies of the order of the splittings of the subbands
produced by the confining potential.

For other growth directions equation (1) must be transformed to a coordinate frame with
one basis vector parallel to the growth direction [14]. For most growth directions this gives
anisotropy in the plane of the well even for the linear Dresselhaus term. For quantum wells
with finite barrier heights, as well as for heterojunction wells, the wavefunction spills from
the well into the bulk and the constant γ is replaced by a suitable average of the bulk splitting
parameter in the well and the bulk [14]. This can provide a means of modulating the spin
splitting since gating the sample will change the relative weights of the well and barrier region
in calculating the average γ [14].

A different mechanism contributing to the spin splittings has recently been recognized.
Consider two semiconductors 1 and 2 and denote successive layers in the growth direction as
C1 or C2 for the cation layers and A1 or A2 for the anion layers. Consider the two quantum
wells denoted by the structures

· · · A1–C1–A1–C1–A1–C1–A1=C2–A2–C2–A2–C2–A2–C2–A2=C1–A1–C1–A1–C1· · ·
(10)
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and

· · · A1–C1–A1–C1–A1–C1–A1=C2–A2–C2–A2–C2–A2–C2=A1–C1–A1–C1–A1–C1· · ·,
(11)

with the double bar indicating the position of the interface. In conventional quantum well
growth, the growth occurs on saturated anion surfaces. Thinking in terms of growth from left
to right, the first structure above will be the expected structure with an A1–C2 interface on the
left side of the well and an A2–C1 interface on the right. Thus the full quantum well structure
is not symmetric under inversion in the plane in the centre of the well. The second structure,
with interfaces A1–C2 and C2–A1, is symmetric but is not the structure to be expected in MBE
growth. In [19] it is shown experimentally that the barrier heights for the two interfaces A1–C2
and A2–C1 are different for many semiconductor pairs. This intrinsic structural asymmetry
of the well leads to terms of both Dresselhaus and Rashba symmetry [20–22]. There will
be a contribution to the Rashba term, discussed below, from the asymmetry associated with
a difference in height of the two barriers, and a Dresselhaus term arises from the detailed
microscopic structure of the interfaces as discussed in [20, 21].

Although spin splitting of the Rashba symmetry is forbidden for the bulk tetrahedral zinc
blende structure, Bychkov and Rashba [8, 23] noted that such a term is allowed for a 2DEG
confined in a well lacking inversion symmetry in the growth direction. Such asymmetry
arises naturally in inversion layers, heterojunctions and asymmetric quantum wells. Sources
of asymmetry of quantum wells include asymmetric doping profiles, differing chemical or
alloy compositions of the confining materials on either side of the well, electric fields applied
via front or back gates, and the barrier height difference associated with the inequivalence of
the A1–C2 and A2–C1 interfaces noted already. A selection of references [16, 107, 25–28]
indicate the variety of issues involved in the calculation of the Rashba parameter, and Pfeffer
and Zawadzki [12, 29] in particular note serious problems with the common assertion that the
splitting is simply proportional to the average electric field.

The Rashba term gives an isotropic splitting, independent of the direction of k in the
plane of the 2DEG, as does the linear Dresselhaus term for (001) and (111) growth directions.
However, as we shall note in section 2.3, if the terms of both symmetries are of comparable
importance the interference between the two can give rise to anisotropic splitting even though
the individual terms are isotropic [14, 30]. Several factors influence the relative importance
of the two, with strong confinement, large band gap, and symmetric confinement favouring
Dresselhaus over Rashba. Recent experimental results [17, 18, 31, 32] displaying the effects
of interference between the two terms, in both GaAs and InAs wells, indicate that the two
terms can easily be of comparable magnitude.

Although the spin splitting is revealed in a number of contexts it is most often determined
experimentally by analysis of Shubnikov–de Haas oscillations of resistivity with magnetic
field [33, 34]. The two spin subbands, see section 2.3, each give their own set of oscillations
and the beat pattern from their interference, along with the mean period, allows determination
of the carrier density and the spin splitting at the Fermi energy [35–37]. The following list
illustrates the variety of additional experiments which evidence the spin splitting. Table 1
gives a sampling of the experimentally determined spin splitting parameter for a number of
systems. The codes in the ‘Expt’ are keyed to the folliwng list of techniques, which also gives
references to a few selected papers illustrating each.

• SdH—Shubnikov–de Haas oscillations [34, 35, 37]
• CO—commensurability oscillations [38]
• WL/AL—weak-localization/anti-localization [18, 32, 39, 40]
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Table 1. Spin splittings for a number of quantum well systems. The 2DEG is primarily in the
centre material if three are listed, in the second if only two. The experimental method is coded
according to the symbols in the list of techniques in the text. Values in parenthesis are estimated
from parameters quoted in the references.

n/p b α 2αkF

System (1012 cm−2) (Å) Expt (10−9 eV cm) (meV) References

CdTe/HgTe/CdTe n = 0.5–1.3 115 SdH, CR 2.7–4.3 (10–25) [44]
Insulator/Si p = 0.8–2.8 ? SdH 1 (4.5–8) [36]
AlGaAs/GaAs n = 0.2–0.7 ? WL/AL (0.03–0.04) 0.07–0.16 [32]
Al0.33Ga0.67As/GaAs n = 1.3 170 RS (0.4) 0.22 [17]
Al0.3Ga0.7As/GaAs n = ∼0.3 ? ESR 0.25 (0.7) [43]a

Al0.5Ga0.5As/GaAs p = 0.5 ? CR 0.6 (2) [42]a

In0.52Al0.48As/In0.53Ga0.47As n = 1.6–2.4 ∼100 SdH 0.8–0.6 5.8–4.9 [45]
InAlAs/In0.53Ga0.65As/InGaAs n = 1.7 150 SdH (0.36) 2.37 [34]
In0.5Ga0.5/In0.77Ga0.23As/InP n = 0.6 100 SdH 0.5 (1.9) [26]
InP/In0.77Ga0.23As/InP n = 0.5–0.8 140 SdH 1.1–0.7 (3.9–3.1) [26]
InP/In0.77Ga0.23As/InP n = 0.7–1.6 100 SdH 1.5–0.6 (6.3–3.8) [25]
InAs (complex well) n = 0.75–1.15 ∼100 SdH 2.1–4.5 (9–24) [46]
AlSb/InAs/AlSb n = 1.1–2.0 150 SdH 0.6 3.2–4.5 [47]
AlSb/InAs/AlSb n = ? 150 WL/AL — 0.4 [48]
AlSb/InAs/AlSb n = 1.0 75 SdH 0.9 4 [35]
AlSb/InAs/AlSb n = 1.1 100 SdH 3.3 15 [35]
Insulator/InAs n = 1.2–2.4 ? SdH 1–4 (5–24) [49]

a As interpreted in [23].

• IR—infra-red absorption [41]
• RS—Raman scattering [17]
• ESR—electron spin resonance [42]
• CR—combined resonance [1, 43].

The ability to modulate the magnitude of the Rashba splitting by using a gated structure is
necessary to realize the spin transistor proposed by Datta and Das [50]. The gating influences
the observed spin splitting through changes in both the Rashba parameter and the Fermi
wavevector as the carrier concentration is changed. The effect of the gating on the Rashba
constant is complex, involving both changes in the potential distribution and the distribution
of the electron density within the well and the spillover into the barrier regions. A number
of authors [25, 26, 45, 46, 51] have reported successful gate-modulation of the Rashba spin
splitting with a tunable range of up to a factor of five. Lu et al [52] probed the spin splitting
of a p-type symmetrically doped GaAs quantum well as a function of gate voltage. The
symmetry of the structure allowed access to both negative and positive values of the Rashba
parameter. They achieved a population difference of the two subbands of roughly 20% of the
electron density, corresponding to a spin splitting of about 20% of the Fermi energy at a hole
concentration of 5 × 1011cm−2.

2.3. Fermi lines and quantization axes

Understanding the correlation of spin quantization axes with the electron wavevector provides
the key to the connection between electric current and spin polarization. Let us examine
the band structure for the 2DEG for the two simple examples of spin splittings described in
section 2.2.
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Figure 1. Energy dispersion relation for: unsplit bands—dotted line; spin–orbit split bands—solid
lines.

Figure 1 illustrates the dispersion relation for the 2DEG,

E(k) = h̄2

2m∗ k2 ± αk, (12)

appropriate to an isotropic splitting linear in k, such as implied either by the small k limit of
the Dresselhaus term for (001) or (111) growth direction, equation (8), or by the Rashba
term equation (3), with k the magnitude (k2

x + k2
y)

1/2 of the two-dimensional wavevector
k = x̂kx + ŷky. Rotation of the curves of figure 1 about the energy axis generates the
energy surface E(k). The two states for a given k correspond to quantization of the electron
spin antiparallel or parallel to the spin–orbit effective field.

For a Fermi degenerate gas of carriers, at zero temperature these states are filled to the
Fermi energy εF, corresponding to Fermi wavevectors

k1 = (1 + η)kF k2 = (1 − η)kF, (13)

with kF = √
2πn the Fermi wavevector appropriate in the absence of the spin–orbit term for

the 2DEG with carrier concentration n. The dimensionless parameter η characterizing the
difference in radii of the two Fermi discs is related to the spin–orbit splitting parameter α by
the relation

η = αkF

2εF
. (14)

Working only to first order in η, as we shall throughout this review, the full spin splitting of
the states at the Fermi wavevector is

εS = 2αkF = 4ηεF. (15)

The Fermi velocities for the two subbands vFi = h̄kF/m∗ ≡ vF are the same and are not given
by h̄ki/m∗!

We may represent the filling of the k states, for Rashba symmetry, by the plot of figure 2(a)
in which the two shaded discs represent the Fermi seas associated with the two branches
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Figure 2. Fermi discs and spin quantization directions for spin–orbit split bands. Light shading if
only states in band 1 are occupied; heavy shading if states in both bands are occupied. (a) Rashba
symmetry; (b) Dresselhaus symmetry; (c) equal amplitudes of Rashba and Dresselhaus terms:
splitting is zero in the (11) direction and maximum in the (11̄) direction.

of the dispersion relation and the two circles, the corresponding Fermi lines. The arrows
denote the orientation of the spin eigenstates, either parallel or antiparallel to the Rashba field,
HSO = (2α/gβ)(k×ẑ), associated with the wavevector k. Essential to note is the correlation of
spin orientation with wavevector direction. In disc 1, for example, electrons at the Fermi energy
moving to the right are dominantly polarized in the negative y-direction while those moving
to the left are polarized in the positive y-direction, etc. As a result, any displacement of the
disc in k-space results in a correlated change in both charge current and spin polarization. The
interesting phenomena are typically the result of incomplete cancellation of contributions from
the two discs because of their different size, characterized by the parameter η. In equilibrium
there is of course neither net polarization of the spins nor a charge current. We will address
the question of the existence of an equilibrium spin-polarized current in section 3.4.

Figure 2(b) shows the two Fermi discs and the associated spin orientations for the case
of dominance by the linear Dresselhaus term, for a (001) or (111) grown well. Again the
splitting is isotropic but here we have x-polarization of spins moving in the x-direction rather
than y-polarization, and no longer the simple rule that the quantization axis for the spins is
perpendicular to the wavevector.

The situation becomes more complex if the Rashba and Dresselhaus terms are comparable
in strength [16, 17, 30]. Figure 2(c) illustrates the case for equal strengths of the two terms.
Although for either the splitting is isotropic, the interference between the two results in
anisotropy of the spin splitting. Comparison of the spin orientations in figures 2(a) and (b)
shows the source of the interference: in the (10) and (01) directions the spin–orbit fields
add in quadrature, while in the (11̄) and (11) directions they interfere constructively and
destructively, respectively. For other growth orientations these anisotropies can become even
more dramatic [14]. As already noted, the interference of the two terms has been demonstrated
in a number of experiments [17, 31, 32].

3. From charge current to spin polarization

Perhaps the most striking consequence of the k-dependent spin splittings is the implication that
an applied electric field should induce not only a charge current but also a spin polarization,
an effect suggested in passing by Ivchenko and Pikus [53] in 1978. The suggestion has been
considered theoretically in more detail by Aronov et al [54, 55], Edelstein [56], Chaplik et al
[57] and Inoue et al [58]. Johnson [59], in 1998, proposed an experiment to demonstrate the
presence of the electric-field induced spin polarization.
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3.1. Relaxation times

The relative magnitude of various relaxation times are critical in defining appropriate models for
our discussion: in particular the spin τS and momentum or resistivity τρ times. Unless explicitly
stated we assume the spin relaxation to be via the D’yakonov–Perel (DP) mechanism [60–62]
in which the spin relaxation is the result of the interplay of the resistivity scattering and the spin
precession in the spin–orbit field. We think of a series of resistivity collisions interspersed with
periods of free precession about the spin–orbit field whose orientation is determined by the
current wavevector. Note that the collisions themselves in the DP mechanism do not involve
a spin flip.

In the case of strong collisions, which we shall denote as the ‘dirty limit’, we have
ωSOτρ � 1: the accumulated precession angle between successive collisions is small and
there is little loss of spin memory per collision. In these successive inter-collision periods the
spin–orbit field is randomly related to that of the previous period so that the spin executes a
random walk with a ‘step length’ ∼ωSOτρ . The mean square accumulated phase after a random
walk for time t is 〈δφ2〉 = (ωSOτρ)2 t/τρ . Taking the spin relaxation time τS to be that value
of t for which the accumulated random phase is equal to unity we have the familiar motional
narrowing result for the spin relaxation rate,

τ−1
S = ω2

SOτρ. (16)

D’yakonov and Kachorovskii [13] extended the DP theory to the case of the two-
dimensional confined system. Comparing equations (1) and (8) shows the ratio of the
Dresselhaus spin–orbit energies h̄ωSO for the two- and three-dimensional cases to be (π/bkF)

2.
This implies, for the dirty limit, a substantial enhancement of the strength of the contributions
from the Dresselhaus terms, by the order of (π/bkF)

4. Note that in the two-dimensional system
the fluctuating spin–orbit fields giving rise to the DP relaxation are in the plane of the 2DEG.
Only the x-component of these fields contributes to the relaxation of the y-component of the
spin and only the y-component contributes to the relaxation of the x-component of the spin.
Both, however, contribute to relaxation of the z-component of spin and there arises a factor
of two anisotropy of the spin relaxation. If the Rashba and Dresselhaus terms are equal in
magnitude, the interference between the two can lead to very dramatic in-plane anisotropy of
the spin relaxation. As can be seen from figure 2(c), with equal strengths of the two terms the
spin–orbit field is always in the ±(11) direction and hence cannot contribute to relaxation of the
spin-oriented parallel of (11). For a more detailed discussion, see the review by Averkiev et al
[63] of spin relaxation in 2DEGs. There are, of course, other contributions to the spin relaxation
involving a spin flip in the scattering. Unless explicitly included, these other processes will be
assumed unimportant in the discussions below.

The ‘clean limit’, or the case of weak collisions, is characterized by ωSOτρ � 1: the
precession in the spin–orbit field at a rate ωSO gives a large precession angle during one
resistivity scattering time. Every momentum scattering event results in substantial loss of spin
memory: the spin and resistivity scattering times are effectively the same. In this regime we
will make no distinction between the two times and refer simply to the scattering time τ .

Table 2 will help determine whether to expect a sample to be in the clean or dirty limit.
Expressions are given for the critical parameter ωSOτρ for a reference sample defined by the
parameter values in the first four rows. A number of other parameter values are listed as
well. The formulae allow easy scaling to determine any of the parameters in terms of known
mobility, spin–orbit coupling constant, concentration and carrier effective mass. Depending
upon temperature, purity and spin–orbit strength, we may expect to find samples in either of
the two regimes.
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Figure 3. The Fermi discs for two non-equilibrium distributions. Dotted lines—equilibrium; solid
lines—non-equilibrium. (a) Response to an applied electric field with δk = qEτ/h̄; (b) response
to spin injection. Heavier arrows denote added spins, lighter arrows depleted spins.

Table 2. System parameters for a 2DEG: the various parameters are expressed in terms of the
mobility, Rashba constant, concentration and effective mass of the carriers. The last column gives
the parameter values for a reference sample defined by the values in the first four rows.

Parameter Symbol Formula Units Reference

Mobility µ µ cm2 V−1 s−1 105

Spin–orbit constant α α eV cm 10−9

Carrier concentration n n cm−2 1012

Effective mass ratio m∗ m∗ — 10−2

Clean/dirty limit ωSOτρ 4.3µm∗α
√

n — 4.3
Fermi wavevector kF 2.5

√
n cm−1 2.5 × 106

Fermi energy εF 2.4 × 10−12n/m∗ meV 240
Fermi velocity vF 2.9

√
n/m∗ cm s−1 2.9 × 108

Spin splitting εS ≡ 2αkF 5α
√

n meV 5
Dimensionless coupling η 5.3 × 1014αm∗/

√
n — 5.3 × 10−3

Spin–orbit velocity vα ≡ α/h̄ 1.5 × 1015α cm s−1 1.5 × 106

Scattering time τρ 5.7 × 10−16m∗µ s 5.7 × 10−13

3.2. Clean limit

To see how the application of an electric field can induce a spin polarization, consider first
the clean limit. As suggested by figure 3(a), where we have taken the spin–orbit splitting to
be of the Rashba symmetry, application of an in-plane electric field E gives, in steady state, a
displacement of the two Fermi discs by an amount

δki = qEτi/h̄, (17)

where τi is the resistivity relaxation time, possibly different for the two Fermi discs. To
avoid confusion of sign, the carriers are assigned a charge q and qualitative arguments will be
given in terms of a positive q . In subband 1 the electric field has, in net, transferred carriers
from negative kx to positive and from spin-up to spin-down, giving a charge current and spin
polarization. Subband 2 adds to the charge current but partially cancels the spin polarization.
The subband contributions to the charge–current density and total spin density are

ji = q2EτivFki

4π h̄
(18)

Si = ±1

2

qEτi ki

4π h̄
, (19)



Topical Review R189

with i = 1, 2 for the two subbands. In the scattering model of [64] the scattering times τi are
related to the resistivity time τ by τi = τ (1 ± η). Using equations (13) and (14), the total
charge current density in the x-direction becomes,

j = q2λkF

2π h̄
E . (20)

Adding the partially cancelling contributions of the two discs to the spin density gives for the
spin polarization, P ≡ 2(S1 + S2)/n,

P = 2qτη

h̄kF
E = qτα

h̄εF
E (21a)

= 2η

vF

j

nq
= αkF

vFεF

j

nq
. (21b)

Equation (21b) relates the fractional spin polarization P to the charge current density j and we
have expressed the results in terms of each of the parameters η and α. The density of states, at
the Fermi level, for each disc is given to first order in η by

Di (E) = ki

2π h̄vF
= ki

kF

n

2εF
, (22)

proportional to its own Fermi wavevector ki, and the velocity vF on the Fermi line is the same for
both discs. Note that the contributions of the two discs add for the charge current but partially
cancel for the spin polarization, the degree of cancellation determined by the dimensionless
parameter η = αkF/2εF. A large spin polarization to charge current ratio requires a large value
of η: hence both a large Rashba splitting α and a small Fermi energy εF. It is interesting to
speculate on the possibility of achieving a value of η equal to unity by going to a low enough,
probably unrealistic, concentration that the radius of the smaller Fermi circle k2 goes to zero.
Though the quantitative arguments above rely on the assumption η � 1, it is still true that for
values εF � αk2

Fm∗/2h̄2 there is no longer the cancellation of spin polarization between the
two subbands and the spin polarization is that given by equation (21b) with η = 1.

The results of equations (21a), (21b) depend on the assumption of elastic scattering rates
from point-like impurities. An alternative assumption of equal scattering times for the two
discs gives a spin polarization of a factor of two smaller [64, 65]. Similar expressions are
quoted in [107, 55–58, 64] but with numerical factors varying over a range of a factor of 4π .

3.3. Dirty limit

With the scattering rate fast compared with the spin–orbit precession rate, a different plausibility
argument [56] may be helpful. Again, for specificity, we take the Rashba form of the spin
splitting.

As the carrier scatters rapidly from one k-state to another, in addition to the fluctuating
Rashba field that gives rise to the DP spin relaxation, it feels a time averaged Rashba field
proportional to its time average wavevector: Hdrift = 2αδk/gβ with δk = qEτ/h̄. We will
refer to this field as a ‘drift spin–orbit field’, a field proportional to the drift velocity of the
carrier gas rather than to the individual carrier velocities. Assuming thermal equilibration in this
effective field and using a Pauli susceptibility gives the same result, probably fortuitously, for
the spin polarization as equation (21a). A lack of dependence of polarization on the resistivity
time τρ has been noted in several more formal calculations [56, 58] of equation (21a), again
with simple point impurity scattering. Aronov et al [55] are critical of this plausibility argument
and have properly calculated the electric field induced spin polarization, including a detailed
treatment of the scattering. The results are similar in magnitude to equation (21a) but with
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Figure 4. Four non-equilibrium situations, solid lines, compared with equilibrium, dotted lines.
Heavier arrows denote added spins, lighter arrows depleted spins. (a) and (b) are for spin-split
2DEGs; (c) and (d) are for 2DEGs without spin splitting. (a) and (c) are the response to an applied
electric field; (b) and (d) the effect of carrier transfer from one to the other spin subband.

numerical correction factors of order unity which depend upon the dominant spin relaxation
mechanism.

An experiment of Kalevich and Korenov [66] attests to the utility of the concept of the
drift spin–orbit field. They injected spin polarization optically into a GaAs quantum well and
applied an electric field to give a photo-current of these polarized spins. The drift spin–orbit
field then drove a precession of the photo-induced spin polarization which could be monitored
via the dependence of the polarization of the luminescence on the magnitude of the applied
electric field. This was effectively a Hanle effect [67] experiment, but with an applied magnetic
field augmented by the drift spin–orbit field.

3.4. Spin currents

One may ask whether there is also a spin current associated with the charge current driven by
an applied electric field in the presence of the Rashba splitting. It has been shown [58, 68]
that for elastic point scatterers, the answer is no. The result may be seen easily, in the clean
limit, for the model of non-interacting electrons that we have used here. Figure 4 contrasts
several non-equilibriumsituations, with the equilibrium Fermi circles indicated by dotted lines,
the non-equilibrium by solid lines. The bold arrows indicate added occupation and the dotted
arrows depleted occupation, as compared with the equilibrium situation. We compare the spin-
split cases 4(a) and (b) with the cases 4(c) and (d) for material with no spin splitting. In 4(a)
and (c) we have displaced Fermi discs, e.g., the result of application of an in-plane electric
field, with no repopulation from one disc to the other. Figure 4(a) illustrates the example
discussed already, with charge current and spin polarization. The displacement of the discs
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has enhanced the spin-down population of disc 1 and depleted that of disc 2. The presence of
the spin splitting prevents full cancellation, since the densities of the states of the two bands,
equation (22), are in the ratio k1/k2 = (1 + η)/(1 − η). If we ask for the non-equilibrium
spin current in disc 1 we find that there is a positive spin-down current associated with the
excess of down spins with positive velocity. On the other hand there is also a deficit of up spins
with negative velocity. The net result of the three italicized words is a negative contribution
to the spin-down current, cancelling the more obvious positive contribution from the down
spins. For 4(c) we have charge current but neither spin polarization nor spin current: in the
absence of correlation of spin and wavevector of the eigenstates, the charge and spin degrees
of freedom are uncoupled.

In cases figures 4(b) and (d) we have displaced carriers from one Fermi disc to the other but
left them undisplaced in k. The effect of the departure from equilibrium now is to give a spin
current (but no spin polarization) for the spin-split bands in figure 4(b), and spin polarization
(but no spin current) for the unsplit bands of figure 4(d). We mention briefly, in section 5.4,
experimental results [69] using interference of a pair of optical beams in which spin current is
generated in the absence of charge current.

A simple calculation shows that there are counter-intuitive contributions to a spin current
from each disc in equilibrium which sum to a total spin-current density of 3nηvF/4 =
3nα/4h̄ cm−1 s−1. Of course, as with equilibrium diamagnetic currents, it is not possible to do
anything useful with these equilibrium spin currents. For a Rashba symmetry their presence
should be manifested, however, as torques on the host lattice at the boundaries of the 2DEG, the
torques being parallel to the boundary and in the plane of the interface. At these boundaries
there is reflection of the carriers with a concomitant spin flip: angular momentum must be
provided by the lattice which then feels a reaction torque. One can make a rough estimate of
the deformation, resulting from this torque, for a cantilever of thickness 0.1 µm and length
1 mm containing a spin-split 2DEG. With current technology the predicted displacement of
the end of the beam of 1 Å could be easily measured by modulating the spin splitting with a
gate, but the effect would presumably be completely masked by much larger electrostatic and
piezoelectric induced deflections.

4. Detection of current induced spin polarization

4.1. Ferromagnetic spin probes

Having noted that a spin polarization can be induced by an electric field, it is natural to ask
whether that spin polarization can be detected by some electrical probe. In 1976 Aronov [70]
suggested that excess spins could be injected into a paramagnetic metal by passing an electric
current into the metal from a ferromagnetic conductor. This idea prompted Silsbee [71],
in 1980, to propose the use of a ferromagnetic probe to detect the non-equilibrium spin
polarization of a conductor. The validity of the proposal was verified in experiments of
Johnson [72] and later by van Son et al [73] using a pair of ferromagnetic electrodes: one
to serve as an injector of non-equilibrium spin density, the other to detect it. Johnson [59],
in 1998, suggested the use of a ferromagnetic probe to detect the spin polarization produced
by a charge current in a 2DEG with spin splitting in the conduction band. The ideas were
confirmed in a series of papers with Hammar et al [74–78]. A phenomenological theory of
the experiment was presented by Silsbee [64, 65].

4.1.1. Spin detection. Figure 5 illustrates the basic idea of spin detection in a paramagnetic
2DEG without spin splitting, using an idealized ferromagnetic probe containing only a single
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Figure 5. Schematic of the detection of spin polarization of a paramagnetic material using
ferromagnetic potential probes.

spin subband, a ‘half-metal ferromagnet’. It is a picture that is also appropriate for spin-
split systems in the dirty limit, thinking in terms of spin-up and -down subbands with rapid
momentum scattering within each and only slow DP relaxation between the two. At the centre
is the density-of-states plot for the two spin subbands of the 2DEG in zero magnetic field.
We suppose a non-equilibrium spin polarization P is maintained by some injection technique
in the 2DEG as evidenced by the difference �εF in the pseudo-Fermi levels of the two spin
subbands with �εF = 2PεF.

If no current is allowed to flow in the external circuit, and if there is no spin relaxation at the
interface, there will be charge flow of spin-down carriers between the spin-down ferromagnet
on the right and the spin-down subband of the paramagnet until the Fermi levels match, as
illustrated. Similarly the ferromagnet on the left equilibrates with the spin-up pseudo-Fermi
level of the paramagnet. The voltmeter, drawing no current, measures the difference between
the Fermi levels of the two ferromagnetic probes,

V = �εF

q
= 2

εF

q
P. (23)

For a typical ferromagnet with a Fermi level cutting both spin subbands the voltage will
be reduced, since the Fermi level will now equilibrate to a weighted average of the two pseudo-
Fermi levels of the paramagnet. The weighting factors depend on the details of the boundary
conditions at the interface and the densities of states and conductivities of the two subbands
of the ferromagnet [79]. For high impedance junctions the weighting depends on the relative
junction conductances for the two spin orientations.

For low impedance junctions, the subband conductivities and spin relaxation time in the
ferromagnet, along with the semiconductor conductivity and spin relaxation time, are the
issues. Even though there is no net charge current for a potentiometric probe there can be
compensating spin currents across the interface which disturb the magnetization within the
paramagnet. Closely related to the effect of these partial currents on the detector efficiency is
the problem of injection efficiency from a low resistivity ferromagnet through a low impedance
junction into a semiconductor or 2DEG [80–82]. For the moment we consider only the case
in which the junction impedance is sufficiently large that these partial currents do not disturb
the spin distributions in either ferromagnet or paramagnet.
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Figure 6. Conceptual experiment for the electrical detection of electric-field induced spin
polarization.

Adopting this assumption we introduce a parameter m reflecting the degree of spin
asymmetry of the ferromagnet–paramagnet junction: in the simplest of models it might
represent the magnetization of the ferromagnet normalized to the maximum possible if all
spins were parallel. Equation (23) is then replaced by

V = 2mεF

q
P. (24)

For the slow scattering, or clean, limit there is no longer a well defined pseudo-Fermi level
for each spin orientation. Referring to figure 3(a) we see that we can relate the spin polarization
and charge current to the shifts of the discs or, more precisely, to the first moments of the
distributions in each of the discs. It is shown in [64] that the Fermi level of the ferromagnetic
probe, in the limit of high junction impedance, is a measure of difference of these first moments,
hence of the spin polarization.

4.1.2. The experiment. Figure 6 defines a conceptual experiment, convenient for illustration,
in which a current is driven through a 2DEG in the x-direction to produce a spin polarization
in the negative y-direction via the mechanism of section 3. A pair of oppositely magnetized
ferromagnetic films then probe the non-equilibrium spin distribution of the 2DEG giving a
signal voltage through the mechanism described above. Equations (21b) and (24) are combined
to give an estimate of the voltage V induced in the ferromagnetic probe by the spin polarization
associated with the current density j = I/W , where I is the drive current and W the width of
the 2DEG:

V = 2mηRλ I = m
αkF

εF
Rλ I, (25)

with

Rλ = 2π h̄

q2

1

WkF
= λ

Wσ
. (26)

The resistivity mean free path is λ = vFτ and we have used the form σ = q2λkF/2π h̄ for the
electrical conductivity of the 2DEG. As long as the junction impedance is sufficiently high this
result is valid independent of the length L of the junction, i.e. the width of the ferromagnetic
film in figure 5 [64].

The resistance Rλ characterizing the linear response in this system is expressed, in the
first form in equation (26), as π/2 times the inverse of the parallel quantum conductance of the
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Figure 7. Sample configuration for the ‘potentiometric’ experiment of Hammar et al. The ‘diode’
experiment uses the same geometry, but with the current driven from terminal 1 to terminal 2.

2WkF/π transverse modes of the 2DEG channel of width W , and in the second form, as the
resistance of a length of the channel equal to the mean free path λ = vFτ . The ‘signal resistance’
V/I is then predicted to be 2Rλ reduced by the dimensionless parameters m characterizing the
spin asymmetry of the junction and η = αkF/2εF characterizing the strength of the spin–orbit
splitting.

Experiments of Hammar, Johnson et al [75–78] in the geometry of figure 7 have used a
15 nm wide InAs 2DEG confined by AlGaAs barriers. The experiments used only a single
permalloy film as a probe rather than the conceptually simpler configuration of figure 6. The
voltage between terminals 4 and 3, including contributions from both the spin-dependent
electrochemical potentials and the regular ohmic resistance drops in the region of the junction,
was measured for the magnetization of the film in each of the positive and negative y-directions.
Taking the difference of these two measured voltages eliminates the contributions from the
ohmic resistance drops, which are independent of magnetization direction. This gives a result
equivalent to the single measurement in the conceptual experiment of figure 6 with the pair of
ferromagnetic probes. The lower curve and left-hand scale of figure 8 [77] show the measured
ratio of voltage to drive current as a function of an applied field in the y-direction. The signal
depends only weakly upon field until the magnetization reversals at about ±30 Oe. The step
height of about 0.4 � reflects the change in ferromagnetic Fermi level as its magnetization is
changed from parallel to antiparallel to the electric-field induced spin polarization.

Was the observed magnitude of signal appropriate? Unfortunately neither the strength of
the Rashba splitting nor the efficiency m of the spin detection were independently measured.
Although m may depend upon chemical complexities of the interface [83] or crystal orientation,
the value of m = 0.4, based on ferromagnet-superconductor tunnelling experiments [84], is
commonly used for permalloy in absence of more specific information. Using this value for
the permalloy film and equation (25) gave a Rashba constant α = 2 × 10−9 eV cm−1. The
agreement with the values of α, for InAs wells, collected in table 1 certainly implies consistency
of the experiment with theory within the uncertainties of the system parameters.

As noted earlier, for low junction impedance the partial currents, corresponding to up-
spin and down-spin flow between the 2DEG and the ferromagnet, perturb the spin-polarization
distribution within the 2DEG, decreasing the observed signal. Does this observation cast doubt
on the experimental results? In the clean limit, the numerical simulations of [64, 65] show
the critical parameters to be the ratio G of the junction conductance to the conductance R−1

λ

characterizing the 2DEG and the ratio of junction length to mean free path. If the normalized
conductance G is smaller than unity, equation (25) is valid for a wide range of junction
lengths L. For low impedance junctions, large G, the signal becomes exponentially small in
G at a rate which increases with increasing ratio of junction length L to the mean free path λ.
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Figure 8. Data of Hammar et al. Lower curve, left-hand scale: the measured resistance V43/I13,
with background subtracted, versus applied magnetic field for the ‘potentiometric geometry’. Upper
curve and right-hand scale: the measured resistance V43/I12 versus applied magnetic field for the
‘diode geometry’.

These predictions are consistent with the Hammar–Johnson experiments with samples with
different junction impedances as discussed in [77]. The junction conductances in all of their
samples are in or near the high impedance limit.

4.2. Other detection options

Circular polarization of photo-luminescence has been suggested by Ivchenko and Pikus [53]
as an alternative method of detecting electric-field induced spin polarization. Carriers without
spin polarization are excited optically with unpolarized light and driven with an applied electric
field. Associated with the current, then, should be an electric-field induced spin polarization
of magnitude given by equation (21a). The proposal of [53] is to detect the spin polarization
through analysis of the circular polarization of the recombination luminescence.

Aronov and Lyanda-Geller [54] proposed detecting the induced spin polarization through
nuclear magnetic resonance (NMR) excitation by an alternating electric field. The alternating
electric field would excite an oscillatory spin polarization, via the spin–orbit mechanism,
which would couple in turn to the nuclei, via hyperfine interaction, and serve as a driving
mechanism for the nuclear resonance. Edelstein [56] suggested an alternative NMR scheme
for the Rashba case in which a constant electric field, perpendicular to the applied magnetic
field of the NMR experiment, induces a shift of the NMR resonance via the electric-field
induced spin polarization combined with the electron-nuclear hyperfine interaction.

Chaplik et al [57] have also evaluated the feasibility of direct detection of the flux generated
by the aligned spins using SQUID magnetometry. It does not sound easy.

Apparently none of these schemes, optical, NMR, or direct flux measurement, have
actually been used to detect the electric-field induced spin polarization unless perhaps the
NMR enhancement seen in the experiments of Clark and Feher [85] was the result of some
such mechanism.

5. From spin polarization to charge current

Having explored the possibility of using a charge current to drive a spin polarization, it is only
natural to ask about the converse situation: will the presence of a spin polarization result in a
charge current? The following argument suggests the answer is yes.
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We may prepare a spin polarized state of a 2DEG-Rashba system easily by application of a
magnetic field, say, in the negative y-direction. Figure 3(b) shows the equilibrium configuration
of the Fermi discs after inclusion of the Zeeman energy

EZ(k) = ∓ gβ H

2

kx

k
, (27)

with the upper sign for disc 1 and the lower for disc 2. The term kx/k arises from the projection
of the applied field onto the quantization direction of the spins in state k. Spin polarization
results from the transfer of spin-up electrons from one side of each of the Fermi discs to
spin-down states on the other. The resulting displacement of the Fermi discs,

δk = gβ H

2

kF

2εF
, (28)

gives the conventional Pauli paramagnetism. The figure also suggests that in equilibrium there
is charge current in disc i given by

ji = qkivF

4π
δk. (29)

However, adding the contribution to the group velocities from the k dependence of the Zeeman
energy,

vZx(k) = 1

h̄

∂ EZ(k)

∂kx
= ∓ gβ H

2h̄

k2
y

k3
, (30)

avoids this embarrassment by cancelling the contributions from equation (29). Of course, we
can expect a charge current only as a consequence of non-equilibrium spin polarization.

Suppose now the magnetic field is quickly removed: for times short compared with the
resistivity scattering time τρ , the distribution is still described by figure 3(b). However there
now is a charge current simply related to the displacements of the discs and which corresponds
to the sum over the occupied states of carrier charge q times the ‘Zeeman velocity’ given by
equation (30), or equivalently by equation (29). In contrast with figure 3(a) we have here the
two Fermi discs shifted in opposite directions by an equal magnitude δk = gβ H kF/4εF. We
may now compute the magnitudes of the non-equilibrium current and spin for each of the discs.
Adding the partial spin densities and the partial currents and combining we obtain the results
which are the converse of equation (21b)

P = δk

kF
(31)

j = δk

kF
nqvFη = nqvFηP = nq

α

h̄
P. (32)

For the individual discs we have the charge–current density to spin-polarization ratio equal to
nqvF. When combining the contributions from the two discs the imbalance of the cancellation
is characterized by the parameter η which appears on one or the other side of the ratio as seen in
equations (21b) and (31). This reflects the relative shifts of the discs seen in figures 3(a) and (b).
(The factor of two in the first form of equation (21b), specific to the particular scattering model,
is irrelevant to this rough comparison of the two results.)

In the discussion of the charge–current induced spin polarization, the experimental
challenge is to find a satisfactory method to detect the spin polarization. For the converse
problem, the measurement of the induced current is straightforward and the experimental issue
becomes finding a more practical means of producing the non-equilibrium spin polarization
than the conceptual scheme proposed above.
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Figure 9. Conceptual experiment for the electrical detection of current driven by electrical injection
of spin polarization.

5.1. Electrically injected spin polarization

In principle, a quite simple experiment to demonstrate the polarization induced current is the
converse of the Hammar–Johnson potentiometric experiments [77] as illustrated conceptually
by figure 9. A current is driven from a ferromagnetic electrode 2 magnetized antiparallel to
ŷ through the centre portion of a bar of 2DEG into a ferromagnetic electrode 4 magnetized
parallel to ŷ. We suppose a spin–orbit splitting of the Rashba symmetry. This configuration
will result in the injection of a non-equilibrium spin polarization in the negative y-direction
into the 2DEG as suggested by Aronov [70] and as demonstrated in a metallic system by
Johnson and Silsbee [72, 79]. The correlation of spin with wavevector implied by the Rashba
form of spin–orbit splitting implies that this injected polarization will be associated with a
charge current in the x-direction. We then predict a current in a zero impedance ammeter
connecting terminals 1 with 3. Alternatively we might measure the voltage induced with an
infinite impedance voltmeter. Imposition of zero current boundary conditions at the ends of
the 2DEG results in the build up of space charge within the 2DEG, inducing a current which
cancels the injected charge current, the integral of the space charge field over the length of the
2DEG giving the measured voltage.

Again we assume the impedance of the junctions between the 2DEG and the injecting
electrodes to be large enough to be in the high impedance limit defined in [64]. Further the
width of the injecting electrode L is taken as large compared with the spin-diffusion length λS

in the 2DEG. We investigate the response to a charge flow of δninj carriers per unit area from
electrode 2 to 3 in a time short compared with all characteristic times in the 2DEG. The effect
will be to inject a spin density parallel to the y-direction of magnitude 2mδninj(1/2) per unit
area; the factor of two due to the spin injection from both electrodes: current out through a
spin-up ferromagnet injects the same sign of spin density as current in through a spin-down
ferromagnet. m is again a measure of the spin asymmetry of the ferromagnet–2DEG junction.
Immediately after injection the corresponding increment in polarization will be

δPy = 2mδninj/n. (33)

The probability that an injected carrier with spin down goes into a given k-state in the 2DEG is
proportional to the square of the spin projection onto the spin states associated with k. Hence
spin-down carriers are more likely to go into states of positive kx in disc 1 and states of negative
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kx in disc 2. This argument leads to the expression for the injected current increment,

δ jxi = mδninjq
ki

2πkF

∫ 2π

0
dθvF cos θ(1 ± cos θ) (34)

= ±mδninjqvF
(1 ± η)

2
, (35)

with the factor (1 ± cos θ) in the integral around the Fermi circle coming from the square of
the spin projections. This is an injection of a current increment, not of charge. The full charge
qδninj flows from one ferromagnet to the other, but this charge is injected into or drawn from
different portions of the Fermi discs to leave a net current in the 2DEG. This net increment in
current density in the 2DEG is

δ jx = δ jx1 + δ jx2 = mηδninjqvF = nqvFηδPy

2
. (36)

To follow the subsequent evolution of the system we look separately at the two limits of the
DP relaxation.

5.1.1. Clean limit. After injection, the spin polarization and current begin to decay. The first
process, in the time interval ω−1

SO � t � τ , is the precession of the spins in their individual
spin–orbit fields at the rate ωSO: only the component of spin parallel to the quantization axes
illustrated in figure 2 is preserved. This precession reduces the polarization by a factor of
two in a time of order ω−1

SO, but leaves the current increment intact. At longer times the spin
and current increments decay simultaneously with the time constant τ . Under continuous
injection of current I = δ jinj into the junction area W L we deduce a steady-state accumulation
of polarization and current density

Py = m I

nqW L
τ and jx inj = mηIτvF

W L
. (37)

The ratio δ jx/δPy is as given by equation (32).
In the experiment suggested by figure 9 this current is cancelled by a reverse current

driven by a space charge field Esc = jx inj/σ associated with a potential barrier of height
V = Esc L = ηm Rλ I , which will be the magnitude of the open circuit voltage between
terminals 1 and 3. This result differs by a factor of two from that obtained using the scattering
model of [64]. Inclusion of the more realistic scattering gives a faster scattering rate for the
smaller disc, hence less current contribution from this disc and a larger total steady state current
to restore this factor of two,

V = Esc L = 2ηm Rλ I. (38)

5.1.2. Dirty limit. If we follow the fate of the injected spin and current introduced in
section 5.1 we find a different picture in the dirty limit. Now the spin is remembered on
the timescale of τS while the current decays in a time τρ . The resulting accumulated spin
polarization and current with steady injection would become

Py = 2m I

nqW L
τS and jx inj = mηIτρvF

W L
= ηnqvF

2

τρ

τS
Py . (39)

The corresponding open circuit voltage is

V = Esc L = jx inj

σ
L = ηm Rλ I, (40)
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Figure 10. Spin-flip scattering as a source of spin induced charge current. Dashed arrows indicate
various allowed spin relaxation processes.

within a factor of two the same as equation (38). Although the current to spin ratio is reduced by
τρ/τS, the higher resistivity of the 2DEG, proportional to τρ , gives a voltage signal independent
of τρ .

Now, however, there is a second contribution to the current, this one associated with the
spin-flip scattering processes and first suggested in conjunction with photo-excitation of spin
polarization by Ivchenko et al [86, 87] in 1989. Consider the transient response to a brief
injection of spin and current: after a time of several τρ the injected current has decayed but not
the spin. The picture is then as illustrated by figure 10 with a spin-up and a spin-down subband
filled to different pseudo-Fermi levels but carrying no charge current. Note that in this picture,
appropriate to the dirty limit, the spins are quantized according to their direction during the
injection process and, after several τρ , are no longer correlated with their wavevector.

Next consider the four spin relaxation events indicated in figure 10 by the arrows [103].
Events 1 and 2 transfer carriers between states of the same velocity and hence do not alter the
charge current. Events 3 and 4, however, change the direction of the carrier velocity. Though
the two tend to cancel, they involve different changes �k in wavevector and, as long as the
scattering probability depends on �k the cancellation will be incomplete. On average, each
event will contribute to the current a term of order ηqvF/L for a time τρ .

The spin-relaxation scattering events occur at a rate n P/τS and in steady state, with
generation balanced by resistivity scattering, give a relaxation driven current of magnitude

jkinetic = ηnqvF
τρ

τS
ξ P, (41)

where ξ is a parameter of order unity determined by the �k-dependence of the spin-flip
scattering. The subscript ‘kinetic’ is the term coined by Ivchenko et al [87] to distinguish this
source of current from that associated with the preferential photo-excitation of carriers with a
net velocity, their ‘relaxational’ mechanism. Equation (41) differs from the ratio jinj/P given
by equation (39) only by the factor 2ξ : the two contributions to the steady state are comparable
in magnitude.

In principle they may be distinguished from the transient response. If the injecting current
could be turned off in a time short compared with τρ the subsequent charge current decay
would show two components. The injection, or relaxational, contribution would decay with
a time τρ , that from the kinetic contribution with time τS. We will see an alternative way to
distinguish the two in section 5.3.
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5.1.3. Experimental result. Hammar et al [74–78] have also performed measurements,
using a single ferromagnetic film, equivalent to that defined by figure 9 with the pair of
films. In their ‘diode geometry’ a current is driven from the 2DEG into the ferromagnet,
via arms 1 and 2 in figure 7 and the voltage is measured between arms 3 and 4. Again
the ‘signal voltage’ is the difference between these two voltages resulting from a reversal
of sign of the magnetization of the ferromagnet. The experiment defined by figure 9 with
two ferromagnets may be represented as a linear superposition of two of the diode-geometry
experiments with reversed magnetizations and currents. Simple manipulations show that the
�V of the diode experiment is the measured voltage of the conceptual converse experiment,
the electrical detection of injected spin polarization.

The upper plot in figure 8 shows the resistance signal V43/I12 as a function of applied
magnetic field for the ‘diode’ geometry. The step in signal with magnetization reversal is
the same as for the potentiometric case. It is perhaps surprising to see the same result for
the two, apparently quite different, experiments. This equality is, however, predicted as seen
by equations (38) and (25). Comparison of figures 6 and 9 shows that the two conceptual
experiments differ only in the exchange of current and voltage leads. The Onsager reciprocity
relations [88, 89] assure that these two results are identical. The numerical calculations [64, 65]
are fully consistent with Onsager requirement, independent of junction length and impedance.

To apply the Onsager relations to the actual experiments it is necessary to assume the resis-
tance of the ferromagnetic film in the junction region to be small compared to the junction resis-
tance: this condition was well satisfied for the sample used for figure 8 [77, 65]. It is essential to
recognize that the experiment in the diode geometry is a three terminal measurement and that the
signal measured between arms 3 and 4 is not a measure of the junction impedance that would be
measured between arms 1 and 2, a two terminal measurement. Although we have assumed con-
stant electrochemical potentials in the low resistivity ferromagnetic film in the junction region,
we must consider variations in the potentials in the 2DEG. The observed signal results from
magnetization dependent buildup of space charge and associated potential variations within the
2DEG in the region of the junction, not from a magnetization dependence of the two terminal
junction resistance. As pointed out by van Wees [90] and others [91, 58, 92], Onsager assures
us that the two terminal resistance cannot change with reversal of the sign of the magnetization.

The first experiment of Hammar et al [74], which used exclusively the diode geometry,
was called into question by van Wees [90] on the basis of the apparent violation of the Onsager
symmetry. The criticism was appropriate for the language used to interpret the experiment,
which made frequent reference to measurement of the interfacial resistance. As noted in the
preceding paragraph, the configuration used in [74] is not, as stated in [74], ‘a standard four-
probe configuration for measuring interface resistance’ between the ferromagnet and the 2DEG.
The criticism of van Wees is thus appropriate to the original interpretation of the experiments,
but does not call into question the validity of the experimental results as a measurement of the
electrical detection of electrically injected spin polarization.

Monzon et al [93] have criticized the experiment primarily on experimental grounds.
They expressed suspicion of the results based on the lack of success of experiments by many
authors to demonstrate spin injection into semiconductors from metallic probes. As noted
earlier, inefficient injection (and detection) is an expected consequence of the combination
of the large disparity in conductances of the two materials and a low junction impedance.
Estimates show that the junction impedance in the challenged experiment was sufficiently
high to obviate this problem. The criticism also suggested that the observed signals were a
consequence of Hall effect voltages resulting from micro-fringing fields near the edges of the
ferromagnetic film. Additional experiments of Hammar et al [94] give convincing evidence
against that interpretation.
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Figure 11. Schematic of mechanism of circular photo-galvanic effect for an intrinsic
semiconductor. Dashed arrows—threshold transitions; solid arrows—allowed transitions for
photon energies above threshold.

5.2. Circular photo-galvanic effect (CPGE)

The injection of spin polarization by circularly polarized light [60, 95] offers an alternative
to electrical spin injection in exploring the connection between charge current and spin
polarization. In 1978 Ivchenko and Pikus [53] and Belinicher [96] suggested independently
that this photo-injection of spin polarization would be accompanied by a charge current.
The predictions were quickly confirmed by Asnin et al [97, 98] in tellurium with more
detailed results reported in 1984 by Averkiev et al [99]. There is a host of mechanisms
by which irradiation by circularly polarized light can induce a charge current. This
phenomenon is generally referred to as the circular photo-galvanic effect (CPGE) and
theoretical treatments [5, 87] have typically focused on systems in the dirty limit, τS � τρ .
Belinicher and Sturman [100] have extensively reviewed the symmetry requirements and
mechanisms for the more general photo-galvanic effect (PGE) summarizing the results as of
1980, and two more recent reviews by Ivchenko [101] in 2002 and by Ganichev and Prettl [2]
in 2003 have focused on the CPGE in quantum well structures. In view of these extensive
reviews we will give here only some hints of the issues involved.

Figures 11 and 12 illustrate two highly simplified examples in which we ignore the
confinement induced splitting of the light–heavy hole degeneracy at k = 0 and assume a
spin splitting linear in k only in the conduction band. In figure 11 we consider an intrinsic
sample with no carriers in either band, optical excitation at an energy only slightly larger than
the band gap, and a spin splitting of the Rashba symmetry. We simplify, as well, by sketching
the ideas in only one dimension in k-space.

Near k = 0 the states in the heavy and light hole bands behave like an atomic quartet
state. The arrows indicate allowed transitions for one circular polarization of light with
light propagating parallel to the y-direction, the direction chosen for angular momentum
quantization. The dashed arrows represent the threshold for interband absorption which occurs
at values displaced from k = 0 as a consequence of the linear splitting in the conduction band.
Because of the curvature of the valence bands, the electron wavevector at threshold is not at
the conduction band minimum and the electrons and holes are created in states with equal but
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Figure 12. Schematic of the mechanism of the circular photo-galvanic effect for a degenerate
2DEG. Dashed arrows—energy allowed but Pauli excluded transitions; solid arrows—energy and
Pauli allowed transitions.

opposite finite velocities of magnitude, v = (α/h̄)[me/(me + mh)]. Here mh is the heavy or
light hole mass for the transitions marked a and b respectively. The solid arrows correspond to
transitions at energies slightly above threshold, with the numbers giving the relative intensities
of the four transitions. The stronger transitions from the heavy hole states lead to the excitation
of a net spin-down of 1/4 for each photo-excitation. If the carrier lifetime against recombination
τL is long compared with the spin relaxation time τS in the steady state we will have

Py = 1

2n

dn

dt
τS = τS

2τL
, (42)

where dn/dt is the rate of photon absorption, and n the steady state electron concentration.
Although the two transitions from the heavy-hole band, of weight 3/4, give electrons

travelling in opposite directions, their average velocity is the same as the velocity of the
electron created at threshold va: in net there will be a negative velocity of the electrons excited
from the heavy-hole band. Similarly, excitations from the light-hole band give, on average,
electrons with positive velocity. The relative magnitudes of the cancelling terms depend upon
the effective masses in the three bands and, in the more realistic case, the relative magnitudes
of the Rashba spin splittings in the valence and conduction bands. Also, this one-dimensional
picture hides important density of states factors which complicate the situation further. We
may write the resulting charge current as

jx = ξ ′q
dn

dt
τρ

α

h̄
= nq

α

h̄

τρ

τS
ξ ′ Py = ηnqvF

τρ

τS
ξ ′ Py, (43)

where n is the steady state photo-electron concentration and ξ ′ a numerical constant
incorporating the partial cancellations of the various contributions to the charge current. This
shows a reduction from equation (31), for which spin and resistivity times were implicitly
assumed the same, by the factor ξ ′τρ/τS: the drift velocity imparted by the optical excitation
is destroyed faster than the spin polarization by the factor τS/τρ . A full treatment, for example
Golub [102], shows the complexity of the physics and of the spectral response for a more
realistic model.

Figure 12 illustrates a similar situation, but now for a degenerate n-type sample, with
photon excitation at an energy just above the threshold of (EG + εF). We take the resistivity
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scattering rate to be sufficiently low that the spin splitting energy is well resolved, the clean
limit of section 3.1. The four arrows indicate energetically allowed transitions of which the
dashed arrows are forbidden by the exclusion principle: transitions are allowed only to the
inner of the two Fermi discs. Again the selection rules favour excitation of spin-down electrons,
now unambiguously with negative group velocity. Using a Rashba-symmetry correlation of
spin with wavevector gives for the spin polarization and charge current,

Py = 1

2n

dn

dt
τ and jx = q

2

dn

dt
τvF. (44)

It is remarkable that equation (44) does not involve the spin splitting parameter! The result
is valid, however, only for photon energies too small to allow the transitions indicated by the
dashed lines in figure 12. For higher energies we are in a situation closer to that of figure 11.
The range of photon energies, to first order in η, for which equation (44) is applicable, is

�Ephoton = 4ηεF
m∗

e

m∗
h

, (45)

where the difference between heavy- and light-hole effective masses has been ignored. Again,
the prediction for a realistic two-dimensional system which properly includes splitting of the
light–heavy hole mass degeneracy at k = 0 by the confinement, and the spin splittings of the
valence band requires a much more complex analysis.

5.3. Precession injection

We noted in the discussion of the currents induced by electrical spin injection, section 5.1, that
there are two mechanisms involved: first the injection process creates a carrier distribution
in which there is both charge current and spin polarization. The two are clearly correlated
but one might be reluctant to say it is the spin polarization which is the source of the charge
current. The corresponding process with optical excitation, described in section 5.2 is the
‘relaxational’ mechanism of Ivchenko et al [86, 87]. The second is the generation of current in
the scattering events associated with the spin-relaxation processes, the ‘kinetic’ mechanism of
Ivchenko et al. Comparison of equation (43) with equation (41), also applicable with optical
excitation, shows the ratio of current density to spin polarization to be of similar magnitude
for the two contributions to the current. As in section 5.1, in principle the two mechanisms
are distinguishable by their transient response: the relaxational mechanism is characterized
by the time τρ , the kinetic by the time τS. However, the required timescales make suitable
experiments difficult.

Ganichev et al [103] have avoided the timescale problem with an ingenious experiment in
which a spin polarization is established by a process which does not involve current injection.
Optical pumping with the light incident along the normal ẑ to the 2DEG injects a spin
polarization perpendicular to the conducting plane. Since no current is allowed by symmetry
in this geometry, one has a spin polarization only. However, if a magnetic field is now applied
in the x-direction, in the plane of the 2DEG, the polarized spins precess in this field away from
the normal and develop an in-plane component in the y-direction. The kinetic mechanism
of [87] then drives a current density of magnitude, equation (41),

jkinetic = ηξnqvS
τρ

τF
P. (46)

Since the spin is injected by precession in the applied magnetic field there is no injection of
current: the observed current is generated by the kinetic mechanism alone. Ganichev [2] has
coined the term spin galvanic effect (SGE) for this generation of current via the spin relaxation.
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The dependence of signal on magnetic field yields in addition, via the Hanle [67] effect, a direct
measure of the spin relaxation time.

More recently Ganichev et al [104] have been able to demonstrate the distinction between
CPGE and SGE in another way which does not involve the application of an external magnetic
field. The authors use a sample with comparable magnitudes to the Dresselhaus and Rashba
splittings and photo-excite carriers from the first to the second subbands. Either the SGE or the
CPGE can be made to dominate the photo-galvanic effect by suitable choice of orientation of
the incident optical beam. The spectral response of the system for the two geometries clearly
confirms the dominance of the predicted mechanism.

5.4. Other issues

In section 2.3 we noted the possibility of the interference of the Rashba and Dresselhaus terms.
Although the energy dispersion relations in a 2DEG, with growth along (100), are isotropic
for both, they differ in the relation between wavevector and spin quantization axis as seen in
figure 2. In particular if both terms are present the effective fields add constructively in the
(11) direction and destructively in the (1̄1) direction. This interference is the source of the
anisotropy noted in section 2.2 and can be quite dramatic if the strengths of the two interactions
are comparable. Ganichev et al [31] used an n-type InAs quantum well with an array of
electrodes around the perimeter in order to measure the direction of any SGE induced currents.
Spin polarization was injected by the spin-precession mechanism [103] with the orientation of
the spin in the well being determined by the orientation of the magnetic field. Measurement
of the strength and orientation of the SGE induced currents as a function of orientation of the
magnetic field allowed the determination of the ratio of Rashba to Dresselhaus coupling of
about 2.1.

Although our principal focus has been upon the association of spin polarization and charge
current, we might mention a recent experiment in which a spin current is optically generated
in absence of charge current. Hübner et al [69], following a proposal by Bhat and Sipe [105],
have demonstrated the ability to create non-equilibrium states with a variety of choices of spin
polarization, charge current and spin current using photo-excitation by a coherently related
pair of laser beams at frequencies ω and 2ω. The two photon excitation by the first interferes
with the one photon excitation of the second to allow more specific selection of the spin and
wavevector of the excited state by suitably choosing the polarization of the two beams and
their relative phase. In the experiment the laser beams are focused on a 4 µm spot on a
thin film of ZnSe. The resultant photo-luminescence contains spatially separated components
with opposite circular polarizations. Determining the location of the luminescence for each
polarization they find the centres of luminescence to be displaced from the spot of excitation by
±10 nm. Up-spins have been injected with one velocity, down-spins with the opposite, giving
a net spin current, and hence relative displacement of up and down spins, but no resultant
charge current.

We have only touched on a few of the ideas related to the optical excitation of spin-
associated photo-currents: the following list indicates the wealth of issues relevant to this
subject.

• The optical injection may involve interband excitation, as in the examples above, intraband
or Drude transitions or, in quantum confined systems, inter-subband transitions.

• There will be contributions to the spin induced current from both the electron and hole
states created in the optical transition: the relative importance of the two depends on
relaxation rates of the different carriers.
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• Detailed arguments will depend upon whether the system is extrinsic or intrinsic and, if
extrinsic, whether the carrier gas is Fermi or Boltzmann.

• The spectral response can serve as a useful test of theoretical predictions.
• Much of the qualitative physics depends upon the relative magnitudes of the many

characteristic times involved: spin, resistivity, and energy relaxation times and
recombination times.

• Quantitative predictions depend upon relative strengths of different scattering
mechanisms: DP, Yafet, Bir-Pikus, optical and acoustical phonon, and impurity.

• Photo-currents injected by circularly polarized light result from a combination of
the pumping process, the spin relaxation process and spin-dependent recombination
processes; they will all show similar symmetry properties and often similar magnitudes.

• Prediction of the temperature dependence provides an additional challenge.

The reader is referred to [2, 96, 98, 100–102] and to references cited therein for a more detailed
discussion of some of these issues and for review of recent experimental results.

6. Conclusion

The spin–orbit splitting of the one-electron eigenstates in solids of suitably low symmetry gives
rise to a curious coupling between non-equilibrium spin polarization and charge currents.
The effects are most evident and of most interest in 2DEGs formed in semiconductor
heterostructures. The mere existence of an electric current in a 2DEG produces a spin
polarization, detectable by ferromagnetic voltage probes or, in some instances, by circular
polarization of luminescence. Conversely, spin polarization induced by either optical or
electrical injection may be detected by measurement of the associated currents or voltages.
These effects offer new tools for the characterization of semiconductor structures and materials;
and the possibility of the useful exploitation of these effects in spintronic devices provides both
opportunities and challenges in device development.

Note added in proof. Rashba [106] has given serious consideration to the issue of equilibrium spin currents and
Mal’shukov et al [107] have proposed a method for electrical induction of AC spin currents.
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